Bất đẳng thức Bunhiacopxki: công thức, cách chứng minh và bài tập vận dụng

Bất đẳng thức Bunhiacopxki: công thức, cách chứng minh và bài tập vận dụng

Bất đẳng thức Bunhiacopxki là gì ? Bất đẳng thức Bunhiacopxki có những công thức gì, hệ quả gì và cách chứng minh từng hệ quả ra sao cùng các dạng bài toán thường găp là những phần kiến thức quan trọng, TH Văn Thủy sẽ giải đáp qua bài viết sau đây. Bạn tìm hiểu nhé !

I. LÝ THUYẾT CẦN GHI NHỚ VỀ BẤT ĐẲNG THỨC BUNHIACOPXKI

1. Bất đẳng thức Bunhiacopxki là gì?

Bất đẳng thức Bunhiacopxki có tên gọi chính xác là bất đẳng thức Cauchy – Bunhiacopxki – Schwarz, đây là một bất đẳng thức do ba nhà toán học độc lập phát hiện và đề xuất, nó có nhiều ứng dụng trong các lĩnh vực toán học. Ở nước ta, để cho phù hợp với chương trình sách giáo khoa, trong tài liệu này chúng ta cũng sẽ gọi nó là bất đẳng thức Bunhiacopxki, gọi theo tên nhà Toán học người Nga Bunhiacopxki.

2. Công thức của bất đẳng thức Bunhiacopxki

+ Bất đẳng thức Bunhiacopxki dạng cơ bản:

Dấu “=” xảy ra khi và chỉ khi 

+ Bất đẳng thức Bunhiacopxki cho 2 bộ số:

Với hai bộ số  và  ta có:

Dấu “=” xảy ra khi và chỉ khi 

Với quy ước nếu một số nào đó (i = 1, 2, 3, …, n) bằng 0 thì tương ứng bằng 0

bwwQGWfLCEjuHbBwFrIQmMPl8ibRK8OmgSi8LLrn

3. Các hệ quả của bất đẳng thức Bunhiacopxki

Hệ quả 1:

Nếu:

  quicklatex.com 934e36207312e8bc6f6776de6dff170d l3

Thì:

  quicklatex.com 195c5e48dbc1f1b20fda99f7a2226ebf l3

Đạt được khi:

  quicklatex.com 26c471bb7e4b6d889510c7babcc61682 l3

Hệ quả 2:
Nếu:

  quicklatex.com 2c3ec9c8390644bdfeeec340a855057b l3

Thì:

  quicklatex.com 3ff601ae42a97f91664260a0415edca4 l3

đạt được khi:

  quicklatex.com 50b7370d666706cedccd2e8209256c69 l3

  quicklatex.com 0a9d90a72f1f016b972db83f11555a31 l3

Dấu “=” sảy ra khi và chỉ khi:

  quicklatex.com 1ffa67e4ea69e7c238c2bb4cd05e54c2 l3

3. Các dạng phát biểu của bất đẳng thức Bunhiacopxki

Bất đẳng thức Bunhiacopxki bao gồm các dạng sau đây:

a. Dạng cơ bản

16094 20190926153403b. Dạng phân thức

16095 20190926153411

Trong các dạng trên thì bất đẳng thức dạng 1, dạng 2, dạng 3 gọi là các bất đẳng thức Bunhiacopxki dạng cơ bản và bất đẳng thức dạng 4 còn được gọi là bất đẳng thức Bunhiacopxki dạng phân thức.

c. Một số dạng đặc biệt

16096 20190926153413

II. MỘT SỐ KĨ THUẬT ÁP DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI 

1. Kỹ thuật chọn điểm rơi

Cũng tương tự như bất đẳng thức Cauchy, khi sử dụng bất đẳng thức Bunhiacopxki để chứng minh bất đẳng thức, ta cần phải bảo toàn được dấu đẳng thức xảy ra, điều này có nghĩa là ta cần phải xác định được điểm rơi của bài toán khi áp dụng bất đẳng thức Bunhiacopxki.

16097 20190926153421

 

16098 201909261534292. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng cơ bản

Bất đẳng thức Bunhiacopxki dạng cơ bản là những bất đẳng thức đánh giá từ đại lượng (a1b1+a2b2+…+anbn)về đại lượng (a21+a22+…+a2n)(b21+b22+…+b2n) hoặc ngược lại.

16099 201909261534343. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng phân thức

Bất đẳng thức Bunhiacopxki dạng phân thức là bất đẳng thức có ứng dụng rộng rãi trong chứng minh các bài toán bất đẳng thức. Nó giải quyết được một lớp các bất đẳng thức chứa các đại lượng có dạng phân thức.

160910 201909261534404. Kỹ thuật thêm bớt

Có những bất đẳng thức (hay biểu thức cần tìm GTLN, GTNN) nếu để nguyên dạng như đề bài cho đôi khi khó hoặc thậm chí không thể giải quyết bằng cách áp dụng bất đẳng thức Bunhiacopxki. Khi đó ta chịu khó biến đổi một số biểu thức bằng cách thêm bớt các số hay biểu thức phù hợp ta có thể vận dụng bất đẳng thức Bunhiacopxki một cách dễ dàng hơn.

160911 20190926153446

160912 201909261534495. Kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki

Có một số bất đẳng thức, nếu ta để nguyên dạng phát biểu của nó thì rất khó để phát hiện ra cách chứng minh. Tuy nhiên bằng một số phép đổi biến nho nhỏ ta có thể đưa chúng về dạng quen thuộc mà bất đẳng thức Bunhiacopxki có thể áp dụng được. Trong mục này chúng ta cùng tìm hiểu kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki.

Công thức kỹ thuật đổi biến

160913 20190926153452

160914 20190926153455

160915 20190926153504

160916 20190926153507

III. LƯU Ý KHI BIẾN ĐỔI BẤT ĐẲNG THỨC BUNHIACOPXKI

Với bất đẳng thức ba biến a, b, c ta có thể sử dụng một số phép biến đổi như:

bien doi bat dang thuc bunhiacopxki 1 rs650

Với một số bất đẳng thức có giả thiết là ta có thể đổi biến:

bien doi bat dang thuc bunhiacopxki 2 rs650

IV: SAI LẦM THƯỜNG GẶP KHI ÁP DỤNG BUNHIACOPXKI

Cho a là số thức dương thỏa mãn a ≥ 2. Tìm giá trị nhỏ nhất của biểu thức:

A=a2+1a2A=a2+1a2

Hướng dẫn:

sai lam gap phai khi ap dung bat dang thuc bunhiacopxki rs650

V. CÁC DẠNG TOÁN THƯỜNG GẶP CỦA BẤT ĐẲNG THỨC BUNHIACOPXKI

a. Bài tập có đáp án:

Bài 1: Cho a, b, c là các số thực dương bất kỳ. Chứng minh rằng:

Lời giải:

Áp dụng bất đẳng thức Bunhiacopxki ta có:

 (điều phải chứng minh)

Dấu “=” xảy ra khi và chỉ khi a = b = c

Bài 2: Tìm giá trị lớn nhất của biểu thức 

Lời giải:

Điều kiện: 

Áp dụng bất đẳng thức Bunhiacopxki có:

tex.vdoc.vn?tex=%7B%5Cleft%5B%20%7B1.%5Csqrt%20%7Bx%20 %202%7D%20%20%2B%201

A max = 2 khi (thỏa mãn)

Vậy max A = 2 khi và chỉ khi x = 3

Bài 3: Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì 

Lời giải:

Áp dụng bất đẳng thức Bunhiacopxki có:

tex.vdoc.vn?tex=1.%5Csqrt%20%7Bp%20 %20a%7D%20%20%2B%201.%5Csqrt%20%7Bp%20 %20b%7D%20%20%2B%201

(điều phải chứng minh)

Dấu “=” xảy ra khi và chỉ khi  hay tam giác là tam giác đều

b. Bài luyện tập thêm

Bài 1: Tìm giá trị lớn nhất của các biểu thức sau:

a, 

b, 

Bài 2: Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:

(gợi ý: biến đổi vế trái thành  rồi áp dung bất đẳng thức Bunhiacopxki)

Bài 3: Cho a, b, c là các số thực dương, . Chứng minh rằng:

Bài 4: Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh:

Bài 5: Cho x > 0 và y > 0 thỏa mãn x2 + y2 ≤ x + y. Chứng minh:

x + 3y ≤ 2 + 

Vậy là các bạn vừa được tìm hiểu bất đẳng thức Bunhiacopxki: lý thuyết, cách chứng minh và bài tập vận dụng. Hi vọng, chia sẻ cùng bài viết bạn đã nắm vững hơn phần kiến thức Đại số 9 tối quan trọng này. Xem thêm bất đẳng thức Cô-si tại đường link này nhứ !

Bản quyền bài viết thuộc trường THPT thành Phố Sóc Trăng. Mọi hành vi sao chép đều là gian lận!

Nguồn chia sẻ: Trường TH Văn Thủy (thptsoctrang.edu.vn)

nguvan

Cô giáo Lê Thị Thanh Loan tốt nghiệp trường Đại học Sư phạm Hà Nội. Hiện nay, Cô đang giảng dạy bộ môn Văn Học tại Đại học Sư phạm Hà Nội
Back to top button